
MTH 605 Midterm Solutions

1. (a) Let G be a topological group, and let H be a closed set in G.
Show that if H E G, then G/H is a topological group.

(b) Show that R/Z is a topological group. Is this space homeomorphic
to any space known to you?

Solution. (a) Since the group operation is continuous in G×G, the left
multiplication map Lg : G→ G, x 7→ g ·x, is continuous. Furthermore,
this map has an inverse is given by Lg−1 , which is also continuous. This
shows that Lg is a homeomorphism. Similarly, the right multiplication
map Rg is also a homeomorphism. Hence, if U is open in G, then for
any subset A of G, UA is an open set, as UA = ∪a∈AUa. Therefore,
the natural map q : G→ G/H is an open and continuous map. Thus,
G → G/H is a quotient map, and G/H is a group that is endowed
with the quotient topology. Finally the fact that the map G × G →
G/H ×G/H is an open map and gH ≈ g−1H would imply that G/H
is a topological group. (Note that the the closedness of H was not
required in the proof above.)

(b) Since (Z,+) E (R,+) and Z is a closed subspace of R under the
standard topology, R/Z is an Hausdorff topological group. (Note that
H is a closed subgroup of G iff G/H is Hausdorff. Try to prove this
fact!) Under the equivalence induced by the quotient map R → R/Z
all intervals of the form [n, n+1], n ∈ Z will be identified. In particular,
R/Z ≈ [0, 1]/0 ∼ 1 ≈ S1.

2. The Borsuk-Ulam Theorem states that for every continuous map f :
Sn → Rn, there exists x ∈ Sn such that f(−x) = f(x). Using the
Borsuk-Ulam Theorem, show that if S2 = A1 ∪A2 ∪A3, where each Ai

is a closed set, then one of the sets Ai must contain an antipodal pair
of points {x,−x}. [Hint: Use the map fi(x) = dist(x,Ai).]

Solution. Let fi(x) = dist(x,Ai) for i = 1, 2. Since Ai is compact,
x ∈ Ai iff dist(x,Ai) = 0. Then f = f1 × f2 is a continuous map
S2 → R2. By the Borsuk-Ulam Theorem, there exists x ∈ S2 such that
fi(x) = fi(−x).

If f1(x) = 0, then f1(−x) = 0, and so {x,−x} ⊂ A1. Similarly, if
f2(x) = 0, then f2(−x) = 0, so {x,−x} ⊂ A2. Otherwise, fi(±x) > 0,
and we must have {x,−x} ⊂ A3.
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3. (a) Let C be a path component of X and let x0 ∈ C be a basepoint.
Show that the inclusion map C ↪→ X induces an isomorphism of
fundamental groups π1(C, x0)→ π1(X, x0).

(b) Let p : X̃ → X be a simply connected covering space. Let A ⊂ X

be path-connected and locally path-connected, and let Ã be a
path component of p−1(A). Then show that p|Ã : Ã → A is a
covering space corresponding to the kernel of the homomorphism
π1(A)→ π1(X).

Solution. (a) If f : I → X is a loop at x0, then since C is path
connected, the image of f is in C. Therefore f may be written as i◦f ′,
where i : C → X is inclusion and f ′ is the map f with restricted range
C. Now [f ] = [i ◦ f ′] = i∗([f

′]) and so i∗ : π1(C, x0) → π1(X, x0) is
surjective.

If i∗([f ]) = 1 in π1(X, x0) then i ◦ f ' ex0(viaH). Since I × I is path
connected, H(I × I) ⊂ C. Restricting the range of H gives a path
homotopy H ′ such that f ' ex0(viaH

′) in C. Hence [f ] = [ex0 ] in
π1(C, x0) and i∗ is injective.

(b) We know that p|p−1(A) : p−1(A)→ A is a covering space, and from
(a), the restriction of a covering space to a path component is a also a

covering space. Let x0 ∈ A and y0 ∈ Ã be basepoints with p(y0) = x0.

Let i : A→ X and j : Ã→ X̃ be the inclusion maps, and let p′ = p|Ã.
Then p ◦ j = i ◦ p′, and consequently, p∗ ◦ j∗ = i∗ ◦ p′∗. Since p∗ ◦ j∗
factors through π1(X̃, y0), which is trivial, we have that i ◦ p′ is trivial.
Hence, Im(p′∗) ⊂ ker(i∗).

It remains to show that ker(i∗) ⊂ Im(p′∗). Let [f ] ∈ ker(i∗), where f is

a loop in A based at x0. Let f̃ be the unique lift of f to Ã with initial
point y0. Then j ◦ f̃ is a lift of i ◦ f to X̃ with initial point y0. Since
[i ◦ f ] = [ex0 ] in π1(X, x0), this latter lift is in fact a loop in X̃. Hence

f̃ is a loop in Ã, and [f ] = [p′ ◦ f̃ ] in π1(A, x0), that is, ker(i∗) ⊂ Im(p′∗)
.

4. (a) Let r : X → A be a retraction map. For x0 ∈ A, what can you
say about the homomorphism j∗ : π1(A, x0) → π1(X, x0) induced
by the inclusion j : A ↪→ X?

(b) Show that the fundamental group of the figure eight space (i.e.
the union of two circles touching at a point) is infinite.
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Solution. (a) Since r ◦ j = iA, we have that r∗ ◦ j∗ = (iA)∗, which is
the identity isomorphism. Hence, j∗ is injective.

(b) Let the two circles be given by (A, x) and (B, y), where x and
y are chosen basepoints. Then the figure eight space in the quotient
space A t B/x ∼ y. (Note that such a quotient space is called a
wedge product of A and B written as X = A ∨ B.) Consider the map
r : X → A defined by r|A = iA and r|B = ey. By the Pasting Lemma
R is continuous, and since r|A = iA, r is a retraction onto A. From
(a), the π1(A, x) ↪→ π1(X, x). Since π1(A, x) ∼= Z, π1(X, x) has to be
infinite.

5. (a) Let {U1, U2} be an open covering of a space X such that U1∩U2 is
nonempty and path-connected, and each Ui is simply connected.
Show that X is simply connected. [Hint: Consider the open cov-
ering {f−1(Ui)} of I, and use the Lebesque number lemma.]

(b) Prove that Sn is simply connected for n ≥ 2.

Solution. (a) We prove the following generalization of (a): Let U be
an open cover of a space X such that each set of U is simply connected
and each intersection of two sets of U is path connected. Then X is
simply connected.

Proof. Let a : I → X be a loop in X at the base point x. By the
Lebesgue covering lemma, there is a subdivision a = a1 + a2 + · · ·+ an
of a such that each ai lies in some set Ui of U . We consider ai as a
map I → X. Let b0, bn+1 be constant paths at the point x. By the
assumptions, we can for 1 < i ≤ n choose a path bi : I → X joining
ai(0) to x and lying in Ui−1 ∩ Ui. The loop −bi + ai + bi+1 lies in Ui

and so is contractible to a constant map (via a homotopy that keeps
the end points fixed), by assumption of simple connectivity of Ui. It
follows that a is contractible to a point in X.

(b) Let N and S denote the north and south poles of Sn respectively for
n ≥ 2. Then Sn \ {N} ≈ Rn ≈ Sn \ {S} via stereographic projections.
Let U1 = Sn \ {N} and U2 = Sn \ {S}, then S1 = U1 ∪ U2, where each
Ui is simply connected, and U1 ∩ U2 = Sn \ {N,S} is path-connected.
From (a), we have that Sn for n ≥ 2 has to be simply-connected.

6. A subspace A is deformation retract of X, if there exists a retraction
r : X → A homotopic to the identity map iX on X.
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(a) Show that if A is a deformation retract of X, then π1(X, x0) ∼=
π1(A, x0) for any x0 ∈ A. [Hint: Use the fact that if f, g :
(X, x0) → (Y, y0) and f ' g (viaH) such that H(x0, t) = y0,∀ t,
then f∗ = g∗.]

(b) Show that Sn is a deformation retract of Rn+1 \ {0} for n ≥ 1.

(c) Show that R2 cannot be homeomorphic to Rn for n > 2.

Solution. (a) Since r : X → A is a retraction, we know from 4(a) that
j∗ : π1(A, x0) ↪→ π1(X, x0). From the fact stated in the hint, we have
that (ix)∗ = j∗ ◦ r∗. From this we infer that j∗ is surjective, and hence
j∗ is an isomorphism.

(b) There is a natural retraction r : Rn+1 \ {0} → Sn, x 7→ x/‖x‖.
This retraction is homotopic to the identity map on Rn+1 \ {0} via
H(x, t) = (1 − t)x + tx/‖x‖. Hence Rn+1 \ {0} deformation retracts
onto Sn.

(c) Suppose we assume on contrary that R2 ≈ Rn for n > 2. Then
R2\{0} ≈ Rn+1\{0}. From(a) and (b), this would imply that π1(S

1) ∼=
π1(S

n), which is impossible, as π1(S
n) is simply-connected for n > 2

(from 5(b)).

7. Bonus. Let φ : R2 → R2 be the linear transformation φ(x, y) =
(2x, y/2). Note that φ defines an equivalence ∼ on X = R2\{0} defined
by (x1, y1) ∼ (x2, y2) iff (x2, y2) = φ((x1, y1)). Let p : X → X/ ∼ be
the induced quotient map.

(a) Show this p is a covering space.

(b) Show the orbit space X/ ∼ is non-Hausdorff, and describe how
it is a union of four subspaces homeomorphic to S1 × R, coming
from the complementary components of the x-axis and the y-axis.

(c) What is the fundamental group of X/ ∼?

Solution. (a) First we need to show that every point has on open
neighborhood that is disjoint from all of its translates under powers of
φ. For the point (a, b) a product neighborhood of the form (c, 2c)× R
where a/2 < c < a (if a 6= 0) or R × (d, 2d), where b/2 < d < b (if
b 6= 0) will work. Hence, p : X → X/ ∼ is a covering space map.
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(b) First, note that φ defines a group action of Z on X. This action pre-
serves the subset (0,∞)×R, and identifies each line x = a homeomor-
phically to the line x = 2a. Hence the image of this set is homeomor-
phic to S1×R. The same is true of the subsets (∞, 0)×R, R× (0,∞),
and R × (∞, 0). Since these sets cover X, the quotient is a union of
four copies of S1 × R. Each line of the form {a} × R in the annulus
((0,∞) × R)/Z spirals around and limits onto two circles (the images
of the two halves of the y-axis). Similarly, the circle S1 × {0} is the
limiting circle for lines in two of the other annuli.

(c) We know that S has fundamental group Z and the group of covering
translations of this covering is also Z. Hence π1(X/Z) maps onto Z with
kernel isomorphic to Z. It follows that π1(X/Z) is a semidirect product
ZoZ. There are only two such groups, Z×Z and a non-abelian group
(because there are only two automorphisms of Z). These generators
are given by loops in X/Z as follows: one is the image of the loop γ
in X which generates π1(X, x0); the other is the image of a path α in
X joining the basepoint x0 to φ(x0). It is not difficult to map I × I
into X so that its boundary maps to the path γ ∗ α ∗ φ(γ) ∗ α. This is
possible because φ preserves the orientation of X. Then the boundary
of the image of this square in X/Z represents the commutator of the
generators, and so they commute. Hence, π1(X/Z) ∼= Z× Z.
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