MTH 605 Midterm Solutions

1. (a) Let G be a topological group, and let H be a closed set in G. Show that if $H \unlhd G$, then G / H is a topological group.
(b) Show that \mathbb{R} / \mathbb{Z} is a topological group. Is this space homeomorphic to any space known to you?
Solution. (a) Since the group operation is continuous in $G \times G$, the left multiplication map $L_{g}: G \rightarrow G, x \mapsto g \cdot x$, is continuous. Furthermore, this map has an inverse is given by $L_{g^{-1}}$, which is also continuous. This shows that L_{g} is a homeomorphism. Similarly, the right multiplication map R_{g} is also a homeomorphism. Hence, if U is open in G, then for any subset A of $G, U A$ is an open set, as $U A=\cup_{a \in A} U a$. Therefore, the natural $\operatorname{map} q: G \rightarrow G / H$ is an open and continuous map. Thus, $G \rightarrow G / H$ is a quotient map, and G / H is a group that is endowed with the quotient topology. Finally the fact that the map $G \times G \rightarrow$ $G / H \times G / H$ is an open map and $g H \approx g^{-1} H$ would imply that G / H is a topological group. (Note that the the closedness of H was not required in the proof above.)
(b) Since $(\mathbb{Z},+) \unlhd(\mathbb{R},+)$ and \mathbb{Z} is a closed subspace of \mathbb{R} under the standard topology, \mathbb{R} / \mathbb{Z} is an Hausdorff topological group. (Note that H is a closed subgroup of G iff G / H is Hausdorff. Try to prove this fact!) Under the equivalence induced by the quotient map $\mathbb{R} \rightarrow \mathbb{R} / \mathbb{Z}$ all intervals of the form $[n, n+1], n \in \mathbb{Z}$ will be identified. In particular, $\mathbb{R} / \mathbb{Z} \approx[0,1] / 0 \sim 1 \approx S^{1}$.
2. The Borsuk-Ulam Theorem states that for every continuous map f : $S^{n} \rightarrow \mathbb{R}^{n}$, there exists $x \in S^{n}$ such that $f(-x)=f(x)$. Using the Borsuk-Ulam Theorem, show that if $S^{2}=A_{1} \cup A_{2} \cup A_{3}$, where each A_{i} is a closed set, then one of the sets A_{i} must contain an antipodal pair of points $\{x,-x\}$. [Hint: Use the map $f_{i}(x)=\operatorname{dist}\left(x, A_{i}\right)$.]
Solution. Let $f_{i}(x)=\operatorname{dist}\left(x, A_{i}\right)$ for $i=1,2$. Since A_{i} is compact, $x \in A_{i}$ iff $\operatorname{dist}\left(x, A_{i}\right)=0$. Then $f=f_{1} \times f_{2}$ is a continuous map $S^{2} \rightarrow \mathbb{R}^{2}$. By the Borsuk-Ulam Theorem, there exists $x \in S^{2}$ such that $f_{i}(x)=f_{i}(-x)$.
If $f_{1}(x)=0$, then $f_{1}(-x)=0$, and so $\{x,-x\} \subset A_{1}$. Similarly, if $f_{2}(x)=0$, then $f_{2}(-x)=0$, so $\{x,-x\} \subset A_{2}$. Otherwise, $f_{i}(\pm x)>0$, and we must have $\{x,-x\} \subset A_{3}$.
3. (a) Let C be a path component of X and let $x_{0} \in C$ be a basepoint. Show that the inclusion map $C \hookrightarrow X$ induces an isomorphism of fundamental groups $\pi_{1}\left(C, x_{0}\right) \rightarrow \pi_{1}\left(X, x_{0}\right)$.
(b) Let $p: \widetilde{X} \rightarrow X$ be a simply connected covering space. Let $\underset{\sim}{A} \subset X$ be path-connected and locally path-connected, and let \widetilde{A} be a path component of $p^{-1}(A)$. Then show that $\left.p\right|_{\tilde{A}}: \widetilde{A} \rightarrow A$ is a covering space corresponding to the kernel of the homomorphism $\pi_{1}(A) \rightarrow \pi_{1}(X)$.
Solution. (a) If $f: I \rightarrow X$ is a loop at x_{0}, then since C is path connected, the image of f is in C. Therefore f may be written as $i \circ f^{\prime}$, where $i: C \rightarrow X$ is inclusion and f^{\prime} is the map f with restricted range C. Now $[f]=\left[i \circ f^{\prime}\right]=i_{*}\left(\left[f^{\prime}\right]\right)$ and so $i_{*}: \pi_{1}\left(C, x_{0}\right) \rightarrow \pi_{1}\left(X, x_{0}\right)$ is surjective.
If $i_{*}([f])=1$ in $\pi_{1}\left(X, x_{0}\right)$ then $i \circ f \simeq e_{x_{0}}($ via $H)$. Since $I \times I$ is path connected, $H(I \times I) \subset C$. Restricting the range of H gives a path homotopy H^{\prime} such that $f \simeq e_{x_{0}}\left(\right.$ via $\left.H^{\prime}\right)$ in C. Hence $[f]=\left[e_{x_{0}}\right]$ in $\pi_{1}\left(C, x_{0}\right)$ and i_{*} is injective.
(b) We know that $\left.p\right|_{p^{-1}(A)}: p^{-1}(A) \rightarrow A$ is a covering space, and from (a), the restriction of a covering space to a path component is a also a covering space. Let $x_{0} \in A$ and $y_{0} \in \widetilde{A}$ be basepoints with $p\left(y_{0}\right)=x_{0}$.
Let $i: A \rightarrow X$ and $j: \widetilde{A} \rightarrow \widetilde{X}$ be the inclusion maps, and let $p^{\prime}=\left.p\right|_{\tilde{A}}$. Then $p \circ j=i \circ p^{\prime}$, and consequently, $p_{*} \circ j_{*}=i_{*} \circ p_{*}^{\prime}$. Since $p_{*} \circ j_{*}$ factors through $\pi_{1}\left(\widetilde{X}, y_{0}\right)$, which is trivial, we have that $i \circ p^{\prime}$ is trivial. Hence, $\operatorname{Im}\left(p_{*}^{\prime}\right) \subset \operatorname{ker}\left(i_{*}\right)$.
It remains to show that $\operatorname{ker}\left(i_{*}\right) \subset \operatorname{Im}\left(p_{*}^{\prime}\right)$. Let $[f] \in \operatorname{ker}\left(i_{*}\right)$, where f is a loop in A based at x_{0}. Let \widetilde{f} be the unique lift of f to \widetilde{A} with initial point y_{0}. Then $j \circ \widetilde{f}$ is a lift of $i \circ f$ to \widetilde{X} with initial point y_{0}. Since $[\underset{\sim}{i} \circ f]=\left[e_{x_{0}}\right]$ in $\pi_{1}\left(X, x_{0}\right)$, this latter lift is in fact a loop in X. Hence \widetilde{f} is a loop in \widetilde{A}, and $[f]=\left[p^{\prime} \circ \widetilde{f}\right]$ in $\pi_{1}\left(A, x_{0}\right)$, that is, $\operatorname{ker}\left(i_{*}\right) \subset \operatorname{Im}\left(p_{*}^{\prime}\right)$
4. (a) Let $r: X \rightarrow A$ be a retraction map. For $x_{0} \in A$, what can you say about the homomorphism $j_{*}: \pi_{1}\left(A, x_{0}\right) \rightarrow \pi_{1}\left(X, x_{0}\right)$ induced by the inclusion $j: A \hookrightarrow X$?
(b) Show that the fundamental group of the figure eight space (i.e. the union of two circles touching at a point) is infinite.

Solution. (a) Since $r \circ j=i_{A}$, we have that $r_{*} \circ j_{*}=\left(i_{A}\right)_{*}$, which is the identity isomorphism. Hence, j_{*} is injective.
(b) Let the two circles be given by (A, x) and (B, y), where x and y are chosen basepoints. Then the figure eight space in the quotient space $A \sqcup B / x \sim y$. (Note that such a quotient space is called a wedge product of A and B written as $X=A \vee B$.) Consider the map $r: X \rightarrow A$ defined by $\left.r\right|_{A}=i_{A}$ and $\left.r\right|_{B}=e_{y}$. By the Pasting Lemma R is continuous, and since $\left.r\right|_{A}=i_{A}, r$ is a retraction onto A. From (a), the $\pi_{1}(A, x) \hookrightarrow \pi_{1}(X, x)$. Since $\pi_{1}(A, x) \cong \mathbb{Z}, \pi_{1}(X, x)$ has to be infinite.
5. (a) Let $\left\{U_{1}, U_{2}\right\}$ be an open covering of a space X such that $U_{1} \cap U_{2}$ is nonempty and path-connected, and each U_{i} is simply connected. Show that X is simply connected. [Hint: Consider the open covering $\left\{f^{-1}\left(U_{i}\right)\right\}$ of I, and use the Lebesque number lemma.]
(b) Prove that S^{n} is simply connected for $n \geq 2$.

Solution. (a) We prove the following generalization of (a): Let \mathcal{U} be an open cover of a space X such that each set of \mathcal{U} is simply connected and each intersection of two sets of \mathcal{U} is path connected. Then X is simply connected.
Proof. Let $a: I \rightarrow X$ be a loop in X at the base point x. By the Lebesgue covering lemma, there is a subdivision $a=a_{1}+a_{2}+\cdots+a_{n}$ of a such that each a_{i} lies in some set U_{i} of \mathcal{U}. We consider a_{i} as a map $I \rightarrow X$. Let b_{0}, b_{n+1} be constant paths at the point x. By the assumptions, we can for $1<i \leq n$ choose a path $b_{i}: I \rightarrow X$ joining $a_{i}(0)$ to x and lying in $U_{i-1} \cap U_{i}$. The loop $-b_{i}+a_{i}+b_{i+1}$ lies in U_{i} and so is contractible to a constant map (via a homotopy that keeps the end points fixed), by assumption of simple connectivity of U_{i}. It follows that a is contractible to a point in X.
(b) Let N and S denote the north and south poles of S^{n} respectively for $n \geq 2$. Then $S^{n} \backslash\{N\} \approx \mathbb{R}^{n} \approx S^{n} \backslash\{S\}$ via stereographic projections. Let $U_{1}=S^{n} \backslash\{N\}$ and $U_{2}=S^{n} \backslash\{S\}$, then $S^{1}=U_{1} \cup U_{2}$, where each U_{i} is simply connected, and $U_{1} \cap U_{2}=S^{n} \backslash\{N, S\}$ is path-connected. From (a), we have that S^{n} for $n \geq 2$ has to be simply-connected.
6. A subspace A is deformation retract of X, if there exists a retraction $r: X \rightarrow A$ homotopic to the identity map i_{X} on X.
(a) Show that if A is a deformation retract of X, then $\pi_{1}\left(X, x_{0}\right) \cong$ $\pi_{1}\left(A, x_{0}\right)$ for any $x_{0} \in A$. [Hint: Use the fact that if $f, g:$ $\left(X, x_{0}\right) \rightarrow\left(Y, y_{0}\right)$ and $f \simeq g($ via $H)$ such that $H\left(x_{0}, t\right)=y_{0}, \forall t$, then $f_{*}=g_{*}$.]
(b) Show that S^{n} is a deformation retract of $R^{n+1} \backslash\{0\}$ for $n \geq 1$.
(c) Show that \mathbb{R}^{2} cannot be homeomorphic to \mathbb{R}^{n} for $n>2$.

Solution. (a) Since $r: X \rightarrow A$ is a retraction, we know from 4(a) that $j_{*}: \pi_{1}\left(A, x_{0}\right) \hookrightarrow \pi_{1}\left(X, x_{0}\right)$. From the fact stated in the hint, we have that $\left(i_{x}\right)_{*}=j_{*} \circ r_{*}$. From this we infer that j_{*} is surjective, and hence j_{*} is an isomorphism.
(b) There is a natural retraction $r: R^{n+1} \backslash\{0\} \rightarrow S^{n}, x \mapsto x /\|x\|$. This retraction is homotopic to the identity map on $R^{n+1} \backslash\{0\}$ via $H(x, t)=(1-t) x+t x /\|x\|$. Hence $R^{n+1} \backslash\{0\}$ deformation retracts onto S^{n}.
(c) Suppose we assume on contrary that $\mathbb{R}^{2} \approx \mathbb{R}^{n}$ for $n>2$. Then $R^{2} \backslash\{0\} \approx R^{n+1} \backslash\{0\}$. From(a) and (b), this would imply that $\pi_{1}\left(S^{1}\right) \cong$ $\pi_{1}\left(S^{n}\right)$, which is impossible, as $\pi_{1}\left(S^{n}\right)$ is simply-connected for $n>2$ (from 5(b)).
7. Bonus. Let $\phi: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ be the linear transformation $\phi(x, y)=$ $(2 x, y / 2)$. Note that ϕ defines an equivalence \sim on $X=\mathbb{R}^{2} \backslash\{0\}$ defined by $\left(x_{1}, y_{1}\right) \sim\left(x_{2}, y_{2}\right)$ iff $\left(x_{2}, y_{2}\right)=\phi\left(\left(x_{1}, y_{1}\right)\right)$. Let $p: X \rightarrow X / \sim$ be the induced quotient map.
(a) Show this p is a covering space.
(b) Show the orbit space X / \sim is non-Hausdorff, and describe how it is a union of four subspaces homeomorphic to $S^{1} \times \mathbb{R}$, coming from the complementary components of the x-axis and the y-axis.
(c) What is the fundamental group of X / \sim ?

Solution. (a) First we need to show that every point has on open neighborhood that is disjoint from all of its translates under powers of ϕ. For the point (a, b) a product neighborhood of the form $(c, 2 c) \times \mathbb{R}$ where $a / 2<c<a($ if $a \neq 0)$ or $\mathbb{R} \times(d, 2 d)$, where $b / 2<d<b$ (if $b \neq 0$) will work. Hence, $p: X \rightarrow X / \sim$ is a covering space map.
(b) First, note that ϕ defines a group action of \mathbb{Z} on X. This action preserves the subset $(0, \infty) \times \mathbb{R}$, and identifies each line $x=a$ homeomorphically to the line $x=2 a$. Hence the image of this set is homeomorphic to $S^{1} \times \mathbb{R}$. The same is true of the subsets $(\infty, 0) \times \mathbb{R}, \mathbb{R} \times(0, \infty)$, and $\mathbb{R} \times(\infty, 0)$. Since these sets cover X, the quotient is a union of four copies of $S^{1} \times \mathbb{R}$. Each line of the form $\{a\} \times \mathbb{R}$ in the annulus $((0, \infty) \times \mathbb{R}) / \mathbb{Z}$ spirals around and limits onto two circles (the images of the two halves of the y-axis). Similarly, the circle $S^{1} \times\{0\}$ is the limiting circle for lines in two of the other annuli.
(c) We know that S has fundamental group \mathbb{Z} and the group of covering translations of this covering is also \mathbb{Z}. Hence $\pi_{1}(X / \mathbb{Z})$ maps onto \mathbb{Z} with kernel isomorphic to \mathbb{Z}. It follows that $\pi_{1}(X / \mathbb{Z})$ is a semidirect product $\mathbb{Z} \rtimes \mathbb{Z}$. There are only two such groups, $\mathbb{Z} \times \mathbb{Z}$ and a non-abelian group (because there are only two automorphisms of \mathbb{Z}). These generators are given by loops in X / \mathbb{Z} as follows: one is the image of the loop γ in X which generates $\pi_{1}\left(X, x_{0}\right)$; the other is the image of a path α in X joining the basepoint x_{0} to $\phi\left(x_{0}\right)$. It is not difficult to map $I \times I$ into X so that its boundary maps to the path $\gamma * \alpha * \phi(\bar{\gamma}) * \bar{\alpha}$. This is possible because ϕ preserves the orientation of X. Then the boundary of the image of this square in X / \mathbb{Z} represents the commutator of the generators, and so they commute. Hence, $\pi_{1}(X / \mathbb{Z}) \cong \mathbb{Z} \times \mathbb{Z}$.

